Reaction of N^1 , N^2 -diarylamidines with 2-(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazol-4-ylidene) propanedinitrile[†]

Mohsen Abdel-Motaal Gomaa*

Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt

2-Arylamino-2-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4*H*-pyrazol-4-ylidene)ethanenitriles (**6a–c**) together with the corresponding formanilides (**7a–c**) are formed in the reaction of N^1, N^2 -diarylformamidines (**1a–c**) with 2-(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazol-4-ylidene)propanedinitrile (**2**). The analogous N^1, N^2 -diarylacet-amidines (**8b–d**) with **2** gave 5-oxospiro[(1,5-dihydro-4*H*-pyrazole)-4,4'-(1',2',3',4'-tetrahydropyridine)]-5'-carbonitriles (**17b–d**) and in two cases 2-arylamino-(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazol-4-ylidene) ethanenitriles (**6b,c**) together with the acetanilides (**12b,c**), which were obtained as minor products.

Keywords: spiro compounds, pyrazoles, amidines, fused tetrahydropyridines

2-(1,5-Dihydro-3-methyl-5-oxo-1-phenyl-4H-pyrazol-4ylidene)propanedinitrile 2 reacts with aliphatic, aromatic and heterocyclic amines by HCN exchange reaction to yield 2arylamino-2-(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4Hpyrazol-4-ylidene)ethanenitriles.^{1,2} o-Substituted arylamines react with 2 to afford similar products which readily cyclise to give 4-azolylidene pyrazolones, while secondary and tertiary amines and activated phenols react (at a *p*-carbon atom) with 2 via replacement of a cyano group by a phenyl ring.² The active methylene compounds react with 2 by a Michael addition to afford 4-spirocyclobutenes via a 1,2-addition pathway or spiropyran-2-pyrazolin-5-ones via a 1,4 addition pathway.³ Similarly, α -amino acids and their esters react with 2 by a Michael addition/elimination sequence with replacement of one cvano group by the amino function.⁴ Junek and co-workers have synthesised some chromoionophores by reaction of 2 with the corresponding aminophenyl crown ethers.^{5,6} Recently we have reported that 2 reacts with cyclic 1,3-dicarbonyl compounds such as indane-1,3-dione, 4-hydroxy-2H-chromen-2one and 5,5-dimethylcyclohexane-1,3-dione to give new spiro compounds: 2-amino-3'-methyl-5,5'-dioxo-1'-phenylspiro [indeno[1,2-b]pyran-4(5H),4'(5'H)-[1H]pyrazole]-3-carbonitrile (A), 2-amino-3'-methyl-5,5'-dioxo-1'-phenylspiro-[4H,5H-pyrano[3,2-c][1]chromene-4,4'(5'H)-[1H]pyrazole]-3-carbonitrile (B), and 2-amino-3',7,7-trimethyl-5,5'-dioxo-1'-phenyl-5,6,7,8-tetrahydrospiro[4H-chromene-4,4' (5'H)-[1H]pyrazole]-3-carbonitrile (C), respectively (Fig. 1).⁷

Results and discussion

In the light of the above-mentioned findings we undertook an investigation of the reactions of open-chain amidines with **2**. N^1, N^2 -Diarylformamidines (**1a–c**) reacted with **2** in ethyl acetate at room temperature to give 2-arylamino-2-(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazol-4-ylidene) ethanenitriles (**6a-c**) together with the formanilides **7a-c**. The nitriles **6a–c**^{1.2} and the formanilides **7a–c**⁸⁻¹⁰ were identified by comparision of their melting points with those reported for authentic samples.

These results indicate that formamidines 1a-c with 2 ultimately form the same products as the corresponding primary amines, that is by a Michael-addition elimination-type sequence similar to the one well documented¹⁻⁷ through a nucleophilic attack of N² on the exo-methylene carbon atom of 2 to form intermediates 3a-c and 4a-c, which *via* elimination of HCN give 5a-c. The latter in turn, undergo hydrolysis¹¹ (by taking up a molecule of water from the atmosphere or the solvent), probably due to the presence of liberated HCN to form 6a-c and 7a-c.

In this work we report another access to spirocyclic systems *via* the reaction of N^1, N^2 -diarylacetamidines with **2**. Thus, N^1, N^2 -diarylacetamidines **8b–d** reacted with **2** in ethyl acetate at room temperature (**8b,c**) or at reflux (**8d**) to form the novel 5-oxospiro[4,5-dihydro-1*H*-pyrazole)-4,4'-(1',2',3',4'-tetrahydropyridine)]-5'-carbonitriles **17b-d** in (34–47% yield). In two cases (**8b,c**), the ethanenitriles **6b,c** were also

* To receive any correspondence. E-mail: magomaa2000@yahoo.com

[†] This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Fig. 1

Scheme 1

formed in minor amounts together with the corresponding acetanilides **12b,c**. Acetanilides **12b,c**¹² were identified by comparison of their melting points with those reported for authentic samples.

The IR spectra of **17b–d** showed strong absorptions between 3450 and 3320 cm⁻¹ (NH₂), 2190 (CN) and 1690 cm⁻¹ (C=O). ¹H-NMR AB patterns with $\delta_A = 3.16$ ppm and $\delta_B = 2.97$ ppm and $|^2J| = 15.6$ Hz are assigned to the C-3' methylene group adjacent to the chiral carbon atom, in addition to signals at 6.59 ppm for NH₂ protons. The ¹³C DEPT spectrum showed a negative signal at $\delta = 26.25$ ppm, confirming the presence of a CH₂ group. The broad-band ¹H-decoupled ¹³C-NMR spectra showed one signal at 51.41 ppm for the spiro carbon atom C-4 and one at 118.43 ppm for the cyano group. It is interesting to mention that the position of the signals of the olefinic C-atoms bearing the cyano group, *i.e.* C-5' in **17b–d**, show up at relatively higher field at $\delta = 52.01-52.13$. The upfield shift in the range 52–57 ppm for the *sp*² carbon attached to the nitrile group has been previously reported.^{13,14}

The most plausible origin of the methylene group is the acetyl methyl group in the acetamidines **8b–d**, and the formation of spiro[1*H*-pyrazole-4,4'-pyridines] **17b–d** can be rationalized as follows: initial nucleophilic attack by N^2 of **8b–d** on one nitrile carbon of **2** forms **14b-d** being in equilibrium with **15b-d**. The nucleophilic methylene carbon of the latter obviously prefers attacking C-4 instead of C-5 of the pyrazolinone moiety in **15** forming **16b–d** which is ultimately isolated as **17b–d**. Lack of attack at C-5 is plausibly due to its amide carbonyl nature and therefore reduced electrophilic character. A minor fraction of **8b,c** undergoes the Michael-addition elimination sequence giving **6b,c** together with **12b,c** after hydrolysis.

Conclusion

 N^1 , N^2 -Diarylformamidines **1a–c** react with **2** like amines by a Michael-addition elimination-type sequence, while the analogous N^1 , N^2 -diarylacetamidines **8b–d**, due to their ambident nature, react with **2** as enamines in a Michael type addition reaction.

Experimental

Melting points were determined on a Griffin & George apparatus. Elemental analyses were carried out by the Microanalysis Center at Cairo University. IR spectra (KBr) were recorded on a Shimadzu 470 spectrophotometer. 400MHz ¹H NMR and 100MHz ¹³C NMR spectra were obtained using a Bruker AM 400 spectrometer. The MS (70 eV, electron impact mode) were recorded on a Jeol JMS600 instrument. Preparative layer chromatography (PLC) used air dried 1.0 mm thick layers of slurry-applied silica gel PF₂₅₄ Merck on 48 cm wide and 20 cm high glass plates and toluene-ethyl acetate (2:1) as developing solvent. Zones were detected by the color or by quenching of indicator fluorescence upon exposure to 254 nm light and eluted with acetone.

Starting materials: N^{1}, N^{2} -diarylformamidines (**1a–c**), ¹⁵ 2-(1,5dihydro-3-methyl-5-oxo-1-phenyl-4H-pyrazol-4-ylidene)propanedinitrile (**2**), ¹ and N^{1}, N^{2} -diarylacetamidines (**8b–d**)¹⁶ were prepared according to the literature procedures quoted.

Reaction of N^1 , N^2 -diarylformamidines **1a–c** with **2**: General procedure: A solution of **2** (236 mg, 1.0 mmol) in ethyl acetate (20 cm³) was added dropwise to a solution of formamidine **1a-c** (1.0 mmol) in ethyl acetate (10 cm³) at room temperature, whereupon the solution assumed a reddish-brown colour. The reaction mixture was left standing at room temperature for 1 h, concentrated, and subjected to PLC using toluene–ethyl acetate (10:1) as developing solvent to give two zones. The faster-moving contained **6a**, **6b**, or **6c**, respectively, while the second contained the corresponding formanilide **7a**, **7b**, or **7c**. The zones were crystallised and identified as follows:

2-(4-Methylphenylamino)-2-(1,5-dihydro-3-methyl-5-oxo-1phenyl-4H-pyrazol-4-ylidene)ethanenitrile (**6a**): 80 mg (26 %) reddish brown crystals m.p. 145 °C (from ethyl acetate) (lit.,¹ 144 °C).

2-(4-Methoxyphenylamino)-2-(1,5-dihydro-3-methyl-5-oxo-1phenyl-4H-pyrazol-4-ylidene)ethanenitrile (**6b**): 90 mg (25 %) reddish brown crystals m.p. 108–111°C (from ethyl acetate) (lit.,¹ 110°C).

2-Phenylamino-2-(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4H-pyrazol-4-ylidene)ethanenitrile (**6c**): 50 mg (17 %) orange crystals m.p. 150 °C (from ethyl acetate) (lit., 1 151 °C).

4'-Methylformanilide (**7a**): 60 mg (74 %) colourless crystals, m.p. 53 °C (from light petroleum, b.p. 40–60°C) (lit.,⁸ 52°C).

4'-Methoxyformanilide (**7b**): 90 mg (60 %) colourless crystals, m.p. .81°C (from light petroleum, b.p. 40–60°C) (lit.,⁹ 84–85 °C).

Formanilide (**7**c), 80 mg (67 %) colourless crystals, m.p. 48–50°C (from light petroleum, b.p. 40–60°C) (lit., 10 50°C).

Reaction of N^l , N^2 -diarylacetamidines **8a–d** with **2**: General procedure: To a stirred solution of each of the acetamidines **8b–d** in ethyl acetate (5 cm³) a solution of **2** (236 mg, 1.0 mmol) in ethyl acetate

Scheme 2

(20 cm³) was added dropwise at room temperature. The reaction mixture was either left standing overnight (8b,c) or refluxed for 6 h (8d), concentrated and subjected to PLC using toluene-ethyl acetate (2:1) as developing solvent to give two or three zones. The faster moving contained **6b** or **6c** respectively, while the second contained the corresponding acetanilides **12b** or **12c**. The more slowly moving zones contained **17b**, **17c**, or **17d**, respectively. Additional minor zones were discarded. Compounds **6b**, and **6c** were collected and identified as before.

4'-Methoxyacetanilide (12b): 24 mg (15 %) colourless crystals m.p. 130–131 °C (from light petroleum) (lit. 12 130 °C).

Acetanilide (12c): 18 mg (13 %) colourless crystals m.p. 113–114 °C (from light petroleum) (lit.¹² 114 °C).

6'-Amino-1'-(4-methoxyphenyl)-2'-(4-methoxyphenylimino)-3methyl-5-oxo-1-phenylspiro[(4,5-dihydro-1H-pyrazole)-4,4'-(1',2',3',4'-tetrahydropyridine)]-5'-carbonitrile (**17b**): This compound was obtained as colourless crystals (220 mg, 43 %), m.p. 230-232 °C (from cyclohexane/ethyl acetate) (Found: C, 68.54; H, 5.06; N, 16.80. C₂₉H₂₆N₆O₃ requires C, 68.76; H, 5.17; N, 16.59); v_{max} (KBr)/cm⁻¹ 3400 (NH₂), 2190 (CN), 1700 (CO); δ_{H} (400 MHz, C_{max} (2021) (21) 3-05 (21), 7-06 (20), 0_{H} (400 MHz, CDCl₃) 2.12 (3H, s, CH₃), 3.25 (1H, d) and 2.98 (1H, d, |²J| 15.6, CH₂), 3.72 (3H, s, OCH₃), 3.84 (3H, s, OCH₃), 5.28 (2H, s, NH₂), 6.84, 7.01, 7.33, 7.46, 7.58, 7.60 and 7.94 (all *m*, aryl-CH); δ_{C} (100 MHz, CDCl₃) 13.56 (CH₃), 26.20 (C-3'), 51.51 (C-4 = C-4'), 52.11 (C-5) and 55 (20) (C-CH₃), 51.51 (C-4 = C-4'), 52.11 (C-5) and 55 (20) (C-CH₃), 51.51 (C-4 = C-4'), 52.11 (C-5) and 55 (20) (C-CH₃), 51.51 (C-4 = C-4'), 52.11 (C-5) and 55 (20) (C-CH₃), 51.51 (C-4 = C-4'), 52.11 (C-5) and 55 (20) (C-CH₃), 51.51 (C-4 = C-4'), 52.11 (C-5) and 55 (20) (C-CH₃), 51.51 (C-5) and 55 (20) (C-CH₃), 51.51 (C-5) and 55 (20) (C-5) (C-5'), 54.59 and 54.89 (OCH₃) 119.13, 120.59, 121.33, 128.39 and 130.90 (all aryl-CH), 118.22 (CN), 137.50, 147.15 and 152.66 (aromatic C-N), 154.20 (C-2'), 154.48 and 154.98 (aryl-C-OCH₃), 155.81 (C-3), 160.63 (C-6'), 172.89 (C-5); *m/z* 506 (M⁺, 80%), 479 (41), 464 (8), 410 (11), 383 (12), 272 (10), 236 (62), 211 (11), 174 (47), 123 (12), 105 (20), 77 (100), 51 (35).

6' -Amino -1, 1' -diphenyl-3-methyl-5-oxo-2' -phenyliminospiro[(4,5-dihydro-1H-pyrazole)-4,4'-(1',2',3',4'-tetrahydropyridine)]-5' -carbonitrile (17c): This compound was obtained as colourless crystals (150 mg, 34 %), m.p. 183–185 °C (from cyclohexane/ethyl acetate). (Found: C, 72.41; H, 4.86; N, 18.75. C₂₇H₂₂N₆O requires C, 72.63; H, 4.97; N, 18.83); v_{max} (KBr)/cm⁻¹ 3410 (NH₂), 2190 (CN), 1700 (CO); δ_H (400 MHz, CDCl₃) 2.11 (3H, s, CH₃), 2.92 (1H, d) and 2.74 (1H, d, |²] 15.2, CH₂), 4.65 (2H, s, NH₂), 6.58, 7.32, 7.44, 7.59, 7.88 and 7.93 (all *m*, aryl-CH); δ_C (100 MHz, CDCl₃) 13.60 (CH₃), 26.22 ((C-3'), 51.55 (C-4 = C-4'), 52.13 (C-5'), 117.12, 120.29, 123.35, 125.72, 127.67, 128.59 and 129.98 (all aryl-CH), 118.32 (CN), 137.44, 147.65 and 151.86 (aromatic C–N), 154.15 (C-2'), 155.81 (C-3), 160.78 (C-6'), 172.29 (C-5); *m*/z 446 (M⁺, 11%), 419 (6), 383 (38), 358 (12), 320 (71), 302 (15), 236 (32), 210 (40), 174 (65), 149 (10), 118 (87), 77 (100), 51 (19).

6'-Amino-3-methyl-1'-(4-nitrophenyl)-2'-(4-nitrophenylimino)-5oxo-1-phenyl-spiro[(4,5-dihydro-1H-pyrazole)-4,4'-(1',2',3',4'tetrahydropyridine)]-5'-carbonitrile (**17d**): This compound (250 mg, 47 %) was obtained as pale yellow crystals, m.p. 279–281 °C (from ethyl acetate) (Found: C, 60.44; H, 3.76; N, 20.89. $C_{27}H_{20}N_8O_5$ requires C, 60.54; H, 3.73; N, 20.98); v_{max} (KBr)/cm⁻¹ 3400 (NH₂), 2190 (CN), 1700 (CO); $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 2.19 (3H, s, CH₃), 3.16 (1H, d) and 2.97 (1H, d, |²J| 15.6, CH₂), 6.59 (2H, s, NH₂), 6.83, 7.21, 7.44, 7.72, 7.80, 8.10 and 8.39 (all *m*, aryl-CH); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 13.66 (CH₃), 26.25 (C-3'), 51.41 (C-4 = C-4'), 52.01 (C-5'), 118.20, 121.29, 124.85, 128.89 and 131.40 (all aryl-CH), 118.43 (CN), 137.44, 147.35 and 152.86 (aromatic C–N), 142.86 and 142.98 (aryl-C-NO₂), 154.07 (C-2'), 155.92 (C-3), 160.86 (C-6'), 172.97 (C-5); *m*/z 536 (M⁺, 80%), 509 (41), 494 (8), 468 (11), 383 (38), 371 (30), 358 (80), 341 (38), 322 (28), 300 (16), 236 (21), 211 (12), 163 (100), 118 (44), 77 (35), 51 (9).

Received 18 December 2000; accepted 5 June 2001 Paper 00/669

References

- 1 H. Junek, M. Klade, H. Sterk and W. Fabian, *Monatsh. Chem.*, 1988, **119**, 993.
- 2 S.A.M. Metwally, G.M. El Naggar, M.I. Younis, T.I. El Emary and M. H. Elnagdi, *Liebigs Ann. Chem.*, 1989, 1037.
- 3 S.A.M. Metwally, G.M. El Naggar and T.I. El Emary, *Liebigs* Ann. Chem., 1991, 961.
- 4 S.A.M. Metwally, M.F. Aly, M.A. Abd-alla, F.M. Atta, and M.E. Abd-El-Monem, *Liebigs Ann. Chem.*, 1991, 387.
- 5 A. Boila-Goeckel, W. Fabian, and H. Junek, *Liebigs Ann. Chem.*, 1996, 397.
- 6 H. Junek, P. Biza and M. Geringe, *Monatsh. Chem.*, 1992, **123**, 581.
- 7 M.A.-M. Gomaa, Pharmazie 1999, 54, 352.
- 8 M.D. Farno and C.K. Ingold, J. Chem. Soc. 1924, 125, 2543.
- 9 F. Benington, R.D. Morin and L.C. Clark Jr., J. Org. Chem., 1958, 23, 19.
- 10 H.R. Hirst, and J.B. Kohen, J. Chem. Soc., 1895, 67, 829.
- 11 M.A.-M. Gomaa, J. Chem. Res. (S), 1998, 654.
- 12 A.I. Vogel, A Textbook of Practical Organic Chemistry, 5th ed., Longman, London, 1991.
- 13 W. Bremser, B. Frank and H. Wagner, *Chemical Shift Ranges in NMR Spectroscopy*, Verlag Chemie, Weinheim, 1982.
- 14 R. Dworczk, H. Sterk, C. Kratky and H. Junek, *Chem. Ber.*, 1989, 122, 1323
- 15 R.M. Roberts, J. Org. Chem., 1949, 14, 277.
- 16 E.C. Taylor and W.A. Erhart, J. Org. Chem., 1963, 28, 1108.